wharfrat Documentation
Release REL

Julian Phillips

Sep 30, 2018

Contents:

Introduction 1
Installation 3
Basic Usage 5
Configuration 7
4.1 Project Configuration o i vt e e e e e e e e e e e e e e e e 7
4.2 Crate Configuration L e 7
4.3 Local Configuration 8
Accessing Containers 11
5.1 wharfratrun e e e e e e 11
52 ExposingCommands e e 11
Examples 13
Indices and tables 15

CHAPTER 1

Introduction

wharfrat is intended to make it easy and convenient to use a development environment in a docker container. The
benefits of this are:

* Simple: A new development environment is setup with a single simple command, meaning new team members
are ready to go immediately.

» Shared: Everyone with access to the project (and docker) has access to the development environment.

* Controlled: Everyone gets a development environment created from the same image - no more “works for me”
issues.

* Versioned: The configuration is version controlled, meaning you get the development environment that matches
the code branch you are working on.

wharfrat Documentation, Release REL

2 Chapter 1. Introduction

CHAPTER 2

Installation

wharfrat Documentation, Release REL

4 Chapter 2. Installation

CHAPTER 3

Basic Usage

wharfrat Documentation, Release REL

6 Chapter 3. Basic Usage

CHAPTER 4

Configuration

Table of Contents

* Configuration
— Project Configuration

— Crate Configuration

— Local Configuration

4.1 Project Configuration

4.2 Crate Configuration

The table below lists the settings available for each crate, their types and default values (if the default is not empty):

wharfrat Documentation, Release REL

cap-add array of strings | capabilities to enable for the container

cap-drop array of strings | capabilities to disable for the container

copy-groups array of strings | groups to copy from the host to the container

env table of strings | mapping from environment variable name to value
env-blacklist array of strings | host environment variables to drop

env-whitelist | array of strings | host environment variables to keep

groups array of strings | groups the user should be in

hostname string hostname for container (default: “dev”)

image string name of image to create container from

mount-home bool should /home be mounted into container (default: true)
ports array of strings | ports to be exposed from container (-p option to docker)
project-mount | string path to mount project in container

setup-post string script to run in container after unpacking tarballs
setup-pre string script to run in container before running tarballs
setup-prep string script to run locally before the other setup

shell string shell to use in the container

tarballs table of strings | mapping from tarball location to install location

tmpfs array of strings | paths in the container where tmpfs should be mounted
volumes array of strings | list of volume mounts (-v option to docker)
working-dir string method to use to set working dir (default: “match”)

cap-add Add additional Linux capabilities to the container.

The list of possible val-

ues can be found in the docker run reference (https://docs.docker.com/engine/reference/run/
#runtime- privilege-and-linux-capabilities).

For example to add the ability to use ptrace inside the container:

cap-add = ["SYS_PTRACE"]

cap-drop Drop normally enabled Linux capabilities from the container. The list of possible val-
ues can be found in the docker run reference (https://docs.docker.com/engine/reference/run/
#runtime- privilege-and-linux-capabilities).

For example to drop the ability to bind to privileged ports:

cap-drop = ["NET_BIND_SERVICE."]

copy-groups TODO ...

env Specify environment variables to be set in the container. This consists of a table, where the keys are
the variable names and the values are the variable values. For example to set SOME_VARIABLE to
“some value”:

[crates.demo.env]
"SOME_VARIABLE" = "some value"

4.3 Local Configuration

In addition to the shared project configuration each user can have a local configuration. This configuration allows
changing the Docker URL, and adding extra steps to the container setup.

docker-url = "file:///var/run/docker.sock"

(continues on next page)

8 Chapter 4. Configuration

https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

wharfrat Documentation, Release REL

(continued from previous page)

[[setups]]
project = ".x/test"
setup-prep = """
echo "LOCAL PREP: $x"
pwd

nnn

setup-pre = """
echo "LOCAL PRE"
pwd

nnn

setup-post = """
echo "LOCAL POST"

wnnn

[setups.tarballs]
"path/to/tarball.tgz" = "/path/in/container/to/unpack"

[setups.env]
"LLOCAL_CRATE_ENV" = "true"

[[setups]]
setup-prep = """
echo "LOCAL PREP: $x"
pwd

nnn

setup-pre = """
echo "LOCAL PRE"
pwd

nnn

setup-post = """
echo "LOCAL POST"

nnn

[setups.env]
"LOCAL_CRATE_ENV" = "true"

The available settings are:

docker- | The URL to use to connect to Docker
url
setups project a regular expression that much match the project path for this setup to be applies. If
not specified, then “.*” is used.
crate a regular expression that must match the crate name for this setup to be applied. If not
specified, then “.*” is used.
setup-prep script to run locally before doing anything else
setup-pre script to run remotely before unpacking tarballs
setup-post script to run remotely after unpacking tarballs
tarballs a table to tarballs to be unpacked into the container, mapping tarball path to target path
in the container
env a table of environment variables to set in the container, mapping name to value

4.3. Local Configuration 9

wharfrat Documentation, Release REL

10 Chapter 4. Configuration

CHAPTER B

Accessing Containers

Table of Contents

* Accessing Containers

— wharfrat run

— Exposing Commands

5.1 wharfrat run

5.2 Exposing Commands

It is possible to use the wr—exec command to expose commands from inside a container to the host. This is normally
done by creating an executable config file with a # ! line that invokes wr—exec. For example, if . /test contains:

#!/usr/bin/env wr—exec

project = "/path/to/project/file"
command = ["command", "argl"]

Then, running . /test arg?2 will run the command command argl arg2 in the container for the default crate
defined in the wharfrat project file at /path/to/project/file.

11

wharfrat Documentation, Release REL

12 Chapter 5. Accessing Containers

CHAPTER O

Examples

13

wharfrat Documentation, Release REL

14 Chapter 6. Examples

CHAPTER /

Indices and tables

* genindex
* modindex

e search

15

	Introduction
	Installation
	Basic Usage
	Configuration
	Project Configuration
	Crate Configuration
	Local Configuration

	Accessing Containers
	wharfrat run
	Exposing Commands

	Examples
	Indices and tables

